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Abstract. Using Ito‘s theorem we derive second-order formulae for the numerical integra- 
tion of Langevin equations. We also show how constrained systems can be handled and 
hence how stochastic simulation can be applied to U ( l j ,  SU(2) and SU(3)  variables. 

1. Introduction 

In this paper we will show that the problem of solving a set of coupled stochastic 
differential equations, the Langevin equations, is equivalent to evaluating multi- 
dimensional integrals of the type which occur in lattice regulated quantum field theory. 
Parisi and Wu (1981) have used this correspondence to postulate the so-called stochastic 
quantisation prescription for quantum field theory. However, our motivation is more 
pedestrian: we want to derive numerical methods for integrating Langevin equations 
and hence for evaluating functional integrals. Much work has already been done in 
this direction by Parisi (1981, 1982) and Drummond et a1 (1983). We will show that 
the use of Ito’s theorem provides a simple systematic way of producing discrete versions 
of the Langevin equations and of handling constrained systems. 

In § 2 we will state the connection between a set of Langevin equations and a 
multidimensional integral over a probability density. This will involve the introduction 
of the Fokker-Planck equation, which is also discussed (from a geometrical point of 
view) in the appendix. Ito’s theorem is introduced in § 3 and used to derive some 
useful expressions from the calculus of stochastic variables. In 0 4 we derive a discrete 
version of the Langevin equations using our previous results. In § §  5 and 6 we show 
how to handle constrained systems of variables, illustrating our methods by writing 
down Langevin equations for U(1), SU(2) and SU(3) variables. Finally we outline 
how stochastic methods can be applied to the field of current interest in particle physics. 

2. Langevin and Fokker-Planck equations 

In this paper we are interested in the properties of the set of n coupled Langevin 
equations: 

du, = f , ( u )  d t + h g i , ( u )  dW,, i , j = l ,  . . . ,  n, (2.1) 

where the W, are a set of independent white noise processes, having the following 
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properties: 

(d Wi d Wi) = 6, dr. 

The ti are a set of independent Gaussian random variables with zero mean and unit 
variance. 

By solving (2.1) we mean integrating an ensemble of independent sets of Langevin 
equations and then averaging functions of the ui over this ensemble. As is shown in 
books on stochastic calculus (Ricciardi 1977, Schuss 1980), this is equivalent to solving 
the Fokker-Planck equation 

aP/ar = a2((ggT)ip)/aui auj-a(fp)/aui, (2.4) 
associated with (2.1) for the probability density P(u,r) and then performing the 
integration of the desired function F ( u )  over the density 

( F (  U)), = P( U, r)F( U) d"u. (2.5) I 
If we choose f i  such that the Fokker-Planck equation takes the form 

ap/ at = (a/aui)[ (gg') i j (  ap/auj + P as( U )/dui)],  (2.6) 

it is easy to show (Falcioni er a1 1983) that the probabllity density relaxes to the 
Boltzmann factor? i.e. 

and hence that 

lim (F( U)), = e-""'F( U )  d"u /I e-""' d"u. 
t-m I 

Identifying S ( u )  with the Euclidean lattice action we establish the link between the 
large time solution of a set of Langevin equations and lattice field theory. 

By choosing the matrix g we can consider cases where there exist constraints 
between the variables ui, as is shown in 99 5, 6 and the appendix. 

3. Ito's theorem and stochastic calcnlos 

If the time evolution of the ui is given by the Langevin equation (2.1) the differential 
change in a function y = y(u, r)  of the ui is given (Schuss 1980) by Ito's theorem: 

) dr+hgi jnydW,.  a ui (3.1) 

The presence of the second derivative term should be noted; it arises from the fact that 

O(d Wi d Wj) = O(dr). 

t For gauge theories this proof breaks down because the normalisation factor in (2.7) is infinite; however, 
Floratas and Iliopoulos (1983) showed by perturbation theory that (2.8) still held for gauge invariant 
functions. 
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Ito’s theorem is central to the calculus of stochastic variables and enables us to derive 
formulae for integration by parts and hence for Taylor series, as is shown in the rest 
of this section. 

Consider the extended set of stochastic differential equations, in block form: 

By applying Ito’s theorem for this extended system to the products (P- t )y  and 
( Wj(P) - Wj( t))y we easily derive the formula for integration by parts of y with respect 
to t and W. In particular 

which on integration gives 

(3.4) 

Similarly we have 

(3.5) 

J a  

By taking P - a  =At we can use formulae (3.4)-(3.7) to build up 
expansion of the integral 

(3.7) 

a power series 

in terms of J A t .  This will be very useful when we come to discretise the set of 
Langevin equations (2.1) in § 4. Also we can use formulae (3.4)-(3.7) to derive Taylor 
series for y (  U (  t + At)): 

(3.8) 
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4. Discretisation of Langevin equation 

Consider the simple set of Langevin equations 

dui = fi d t + &  dW,. (4.1) 

This can be converted into the equivalent set of integral equations 

ui(  + A t )  = u i ( t ) +  /f"A' fi cif '+& dW,. (4.2) 
t 

Using the definition of the white noise process the second integral can be immediately 
performed giving 

u i ( t+At )=u i ( t )+  (4.3) 

We can approximate the remaining integral, using the results of 0 3, as a power series 
in J A t .  To first order (i.e. O(At3I3)) we have 

u , ( t  +At) = u , ( t )  f, +A$ + (2At)1/251 +O(At3/2), (4.4) 

while to second order (i.e. O(At)5/2)) 

u , ( t + A t )  = u , ( t ) + ( 6 , , + i A t  a f l / a u , ) [ f , A t + ( 2 A t ) " 2 ~ , ] + ~ ( A f ) 2  a2fl/au, d ~ , + o ( A t ~ / ~ ) .  

It is interesting to note that using Taylor series the second-order formula (4.5) can 
be simplified to 

(4.5) 

u,( t  + A t )  = u , ( t )  +&At( f , ( t )  + f , ( t + A t ) )  + ( 2 A t ) ' / 2 5 1  (4.6) 

which would be the result obtained if the integral in (4.3) was naively approximated 
using the trapezium rule. 

For the more general set of Langevin equations (2.1) we easily derive the first-order 
formula 

u,(t+At) = u l ( t ) + A t f l + ( 2 A t ) ' / 2 g , , ~ , + O ( A t 3 / 2 ) .  (4.7) 
The equivalent formula to (4.5) will be more complex: we do not derive it here. 

In 00 5 and 6 we show how Ito's theorem allows us to set up Langevin equations 
for constrained systems, that is cases where the U, are not all independent. Section 5 
treats the case of one equation of constraint, using U(1) and SU(2) variables as 
illustrative examples. The more complex case of several equations of constraint is 
handled in 0 6, the example being SU(3). 

5. Langevin equation for U(1) and SU(2) variables 

We can write a U( 1) variable as 

U = u1 +iu2, 

subject to the constraint 

u : + u : = 1 .  

Similarly we can write a SU(2) variable as 

ul+iu2 u3+iu4 
-u3+iu4 ul-iu2 

U = (  (5.3) 
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subject to the constraint 

U: +u: + U: + U: = 1. (5.4) 

We will consider the two cases together, taking the equation of constraint to be 

C (  U )  = +U&, = 4. ( 5 . 5 )  

We desire a Langevin equation which obeys this constraint. This will be achieved if 
at time zero C (  U )  = $ and for all later times 

dC(  U )  = 0. (5 .6 )  

Using Ito's theorem this is equivalent to 

(u,fi + (ggT),,) d t + h u , g ,  dW, = 0. 

g,, = 6, - W I .  

U&!, = 0, 

(gg'), = g,, 

u,(a/auJgg'L, = - (ggT)ll+ 

(a/au,)(gg')l, = - ( ~ 1 , - 1 ) % .  

fi = -(gg'), W u ) / a u ,  + (a/au,)(gg'),, 

aP/at  = (~/au,)[(ggT)ll(P as/au,  + ap/au,)l' 

A suitable choice for the g,, is 

This choice of g,, has the following properties at C =+: 

A suitable choice of fi is 

The resulting Fokker-Planck equation is (see also the appendix) 

whose large t solution relaxes to the Boltzmann factor (see § 2). 
The choice (5.8) and (5.13) leads using (5.10) to the discrete formula 

Au, = (6, - u,u,){-(aS/au,) At  + (2At)'/2f,] - (6, - 1) U, At. 

(5.7) 

(5.9) 
(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

This discrete form of the Langevin equation will not obey the constraint to all orders 
of At,  but we can compensate for this by renormalising the ui after each time step: 

uj + Ui/( U,U,)'/*. (5.16) 

Parisi (1982) suggested that a simpler way of carrying out the stochastic simulation 
of U(1) and SU(2) would be to consider the unconstrained Langevin equation 

d 4 , = - [ a S ( 4 ) / a 4 , ] d t + ~ 2 d W j  (5.17) 

and the variable 

ui = 4i/(4a4a)"2. 
Applying Ito's theorem to ui and discretising gives 

(5.18) 

This agrees with the previous formula provided dud,, = 1 at the start of the step, hence 
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proving that Parisi’s algorithm 

+ , ( ? + A t )  = ~ i ( t ) - ( a S / a ~ j ) A t + ( 2 A t ) ” 2 ~ j ,  

ui( f + At) = c$~( t + At) / (  &( t + At)&(  r + Af))’”, 

4, ( t  + A t )  = uj ( t  + A t ) ,  

(5.19) 

will produce a sequence of SU(2) or U( 1) elements with the correct limiting distribution, 
if the initial state obeys the constraint. 

6. Langevin equation for SU(3) variables 

We adopt the same approach as we did for the group SU(2). However, the greater 
complexity of SU( 3) over SU( 2) will be reflected in the resulting Langevin equation. 

A general SU(3) matrix can be written 

ab: ), U = [  bl b2 

a1 a2 

(a* ~ b * ) ,  (a*  A b*)2 (a* A b*)3 

where 

a =x+iy ,  b = s + it, 
are complex three-vectors obeying the four constraints 

a *  a* = 1, b * b* = 1, (6.3) 

a * b * = O  (6.4) 

We will find it more convenient to rearrange the constraints in the symmetric form 
(the real and imaginary parts of the third equation forming two separate conditions). 

c’ = (l /&)(x - x + y - y + s * s + t * I )  = l / A ,  

c3 = (i/fi)(x. s+ t )  = 0 ,  c4=(1/A)(-x. t + s .  y ) = o ,  

U, = (x, Y, s, t ) ,  

C* = ( 1/48) (x . x + y y - s - s - t 6 r )  = 0 ,  (6.5) 

and to introduce the notation 

j = l , .  . * ,  12. (6.6) 

Differentiating C’ through C4 gives, in block form, 

c: = ( 1 / 4 @ ,  Y, s, f ) ,  

c: = (1/JZ)(s, t, x, Y), 

cpcf = s a p .  (6.8) 

C: = (i/JT)(x, Y, -s, - r ) ,  
cp = (l /JZ)(-t ,  s, y, -x). 

(6.7) 

It ‘is easy to  see, provided the constraints are obeyed, that the Cp form an orthonormal 
set, i.e. 

Extending the arguments of 0 5 we require a Langevin equation which makes 

dC“  = 0, CY = 1,2 ,3 ,4 .  (6.9) 
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More explicitly we want to choose g, and f, such that 

(f l  aC“/au, +(gg): a2C“/au, au,) dt+fig,(aC”/au,)  d W, = 0. 

A suitable choice for g,, is 

(6.10) 

g,, = &,- CPCp, (6.11) 

and for the f, 
f l  = - (gg’), as/au, + (a/au,)(gg’)I,’ 

as can easily be verified using the properties of the Cp, namely 

(6.12) 

c:g, = 0 for all y, (6.13) 

(ggT), = g,,, (6.14) 

c: (a/au,)(gg’), = - (gg’),c;, (6.15) 

(a/au])(gg’)i, = -4u1, (6.16) 

provided constraints (6.5) are obeyed. The form of Langevin equation we use for 
numerical work is, in discrete form, 

Au, = ( 6 , - C ~ C ~ ) [ - ( a S / ~ ~ , ) A t + ( 2 A t ) ” 2 ~ , ] - 4 ~ ,  At. (6.17) 

As for the SU(2) it is easy to show that the large time solution of the Fokker-Planck 
equation corresponding to our choice of g,, and f, converges to the desired Boltzmann 
factor. 

Our discrete version of the constrained Langevin equation will only approximately 
generate a set of SU(3) matrices (to O(At3’2)). Hence it will be necessary to reimpose 
the constraints after each time step. 

7. Stochastic methods in field theory 

In quantum field theory we often wish to calculate connected Green functions of the 
form 

( I ( u ) J ( u ) ) ,  = ( I ( u ) J ( u ) )  - ( I (  u))(J(u))t (7.1) 

where ( ) denotes integration over a probability density. Using stochastic methods we 
could evaluate (7.1) by calculating each term on the right-hand side separately (see 
§ 2). However, there is an alternative procedure using the fluctuation-dissipation 
theorem. 

We can add a source term A J ( u )  to the action S ( u )  and note that 

This suggests considering the A dependent set of Langevin equations (initially we take 
the ui to be unconstrained for simplicity) 

Expanding ui in powers of A (Parisi and Wu 1981)’ 

ui = u j O ) + ~ u ! ~ ) + i ~ * ~ $ ~ ) +  . . . , 
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substituting into (7.3) and equating powers of A we obtain 

dui0’- aS/au ,  + d  W,, 

du(”  , = - ( a2s/ a U, au,) U:’) + a ~ /  a U,, 

(7.4) 

(7.5) 

where the derivatives are evaluated at U, = U:”. The large time limit of the average 
of U:’) over the ensemble of stochastic differential equations converges to (u,J(  u ) ) ~ .  
Similarly by expanding I ( u )  as a power series in A we can calculate ( I (u)J (u)L.  

We can use the same procedure for the constrained case. Additional complications 
arise, however, because we must expand the matrix g , (u)  in powers of A. An 
alternative to the above is (Parisi 1982) to simulate equation (7.3) for A = 0 and A = a 
small value, using the same set of random numbers in each case, and then form the 
derivative with respect to A numerically. Whether using the fluctuation-dissipation 
theorem to calculate connected Green functions is more accurate than a direct evalu- 
ation of (7.1) must be decided by numerical experiment. 

In summary, we have found a means of calculating the Green functions of a quantum 
field theory by numerically solving a coupled set of Langevin equations. For the 
unconstrained case we have derived a second-order algorithm for iterating the Langevin 
equations, and for the constrained case a first-order algorithm. A possible way of 
improving the performances of the first-order algorithm is to note (Drummond et a1 
1983) that it gives an error proportional to the step size Ar when used to calculate 
Green functions. If the calculation was repeated for several values of At the results 
could be extrapolated to A t  = 0. At present we are testing these ideas by numerical 
experiment. 
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Appendix. Geometrical picture of the Fokker-Planck equation 

Using the divergence theorem we can gain an interesting geometrical insight into the 
meaning of the Fokker-Planck equation. This will be particularly illuminating for the 
constrained case. 

Consider a volume V enclosed by a surface R; integrating the Fokker-Planck 
equation over the volume V, we have for the unconstrained case 

( d / a t )  1 P d T = j  (PaS/dui+aP/aui)  da,. 
V n 

We can interpret this as a.conservation theorem for ‘probability mass’. The left-hand 
side is the rate of change of probability mass contained in V and the right-hand side 
is the flux of probability mass entering V through R. 

For the constrained case we take V to be the part of the total space which obeys 
the constraints. The boundary of this region is given by the surfaces defined by the 
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equation(s) of constraint. Integrating the Fokker-Planck equation as before, we obtain 

( a l a r )  [ P d T = [  (gg')i j(PaS/auj+aP/aui) dui. 
V R 

But du, is in the direction of aC/au,  hence ( g g T ) i j  du, = 0 ,  

(ala?) J PdT=O. 
V 

If an ensemble of points is set up obeying the constraint(s) they will remain trapped 
in the volume of space obeying the constraints for all later times. 
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